
Article

Alkali and Alkaline-Earth Metal Amidoboranes: Structure, Crystal Chemistry, and Hydrogen Storage Properties

Hui Wu, Wei Zhou, and Taner Yildirim

J. Am. Chem. Soc., 2008, 130 (44), 14834-14839 • DOI: 10.1021/ja806243f • Publication Date (Web): 11 October 2008

Downloaded from http://pubs.acs.org on February 8, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 10/11/2008

Alkali and Alkaline-Earth Metal Amidoboranes: Structure, Crystal Chemistry, and Hydrogen Storage Properties

Hui Wu,*,^{†,‡} Wei Zhou,^{†,‡} and Taner Yildirim^{†,§}

NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272

Received August 7, 2008; E-mail: huiwu@nist.gov

Abstract: Alkali- and alkaline-earth metal amidoboranes are a new class of compounds with rarely observed $[NH_2BH_3]^-$ units. LiNH_2BH_3 and solvent-containing Ca $(NH_2BH_3)_2$ ·THF have been recently reported to significantly improve the dehydrogenation properties of ammonia borane. Therefore, metal amidoboranes, with accelerated desorption kinetics and suppressed toxic borazine, are of great interest for their potential applications for hydrogen storage. In this work, we successfully determined the structures of LiNH_2BH_3 and Ca $(NH_2BH_3)_2$ using a combined X-ray diffraction and first-principles molecular dynamics simulated annealing method. Through detailed structural analysis and first-principles electronic structure calculations the improved dehydrogenation properties are attributed to the different bonding nature and reactivity of the metal amidoboranes compared to NH_3BH_3.

Introduction

Ammonia borane (AB, NH₃BH₃), with 19.6 wt % hydrogen capacity, has recently attracted great interest due to its potential applications for chemical hydrogen storage. The NH₃BH₃ molecule contains both hydridic B–H and protic N–H bonds and a strong B–N bond so that hydrogen release from solid AB is more favorable than dissociation to ammonia and diborane under most conditions.¹ Solid AB releases 1 equiv of H₂ at temperatures up to 110 °C and forms a mixture of products consisting mostly of aminoborane oligomers, [NH₂BH₂]_n.^{2–6} [NH₂BH₂]_n can further dehydrogenate 1 equiv of H₂ at 110–200 °C and produce polyiminoboranes, [NHBH]_n.^{2–4,7} However, accompanying the release of hydrogen, volatile toxic species such as borazine also form with increasing temperature ramp,^{2–4,7} thus degrading the purity of hydrogen that can be used for fuel cell systems.

Several approaches, including use of various transition metals^{8,9} and base-metal catalysts,¹⁰ acid catalysis,¹¹ particle

- (1) Stephens, F.; Pons, V.; Baker, R. T. Dalton Trans. 2007, 2613–2626.
- (2) Hu, M. G.; Geanangel, R. A.; Wendlandt, W. W. Thermochim. Acta 1978, 23, 249–255.
- (3) Baitalow, F.; Baumann, J.; Wolf, G.; Jaenicke-Rossler, K.; Leitner, G. Thermochim. Acta 2002, 391, 159–168.
- (4) Wolf, G.; Baumann, J.; Baitalow, F.; Hoffmann, F. P. *Thermochim. Acta* 2000, 343, 19–25.
- (5) Sit, V.; Geanangel, R. A.; Wendlandt, W. W. Thermochim. Acta 1987, 113, 379–382.
- (6) Stowe, A. C.; Shaw, W. J.; Linehan, J. C.; Schmid, B.; Autrey, T. Phys. Chem. Chem. Phys. 2007, 9, 1831–1836.
- (7) Baumann, J.; Baitalow, F.; Wolf, G. Thermochim. Acta 2005, 430, 9–14.
- (8) Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. J. Am. Chem. Soc. 2003, 125, 9424–9434.

size effects from nanoscaffolds,¹² ionic liquids,¹³ and carbon cryogels,¹⁴ etc., have been reported to improve the dehydrogenation properties of AB in terms of the reduced dehydrogenation temperatures,¹² accelerated H₂ release kinetics,^{8–14} and/or minimized borazine release.¹³ However, there is no single approach that can achieve all these improvements simultaneously for AB. More recently, alkali metal amidoboranes, i.e., LiNH₂BH₃ and NaNH₂BH₃,¹⁵ and solvent-containing alkalineearth amidoborane, i.e., Ca(NH₂BH₃)₂•2THF, ¹⁶ have been reported to show significantly enhanced dehydrogenation kinetics and suppressed borazine release.

Structural reports on compounds containing $[NH_2BH_3]^-$ are scarce. Although formation of LiNH₂BH₃, NaNH₂BH₃, and Ca(NH₂BH₃)₂•2THF has been identified in both solution^{17,18} and the solid state^{15,16} by NMR and X-ray diffraction (XRD),^{15,16,18} to the best of our knowledge, no detailed crystal

- (9) Denney, M. C.; Pons, V.; Hebden, T. J.; Heinekey, M.; Goldberg, K. I. J. Am. Chem. Soc. 2006, 128, 12048–12049.
- (10) Keaton, R. J.; Blacquiere, J. M.; Baker, R. T. J. Am. Chem. Soc. 2007, 129, 1844–1845.
- (11) Stephens, F. H.; Baker, R. T.; Matus, M. H.; Grant, D. J.; Dixon, D. A. Angew. Chem., Int. Ed. 2007, 46, 746–749.
- (12) Gutowska, A.; Li, L.; Shin, Y.; Wang, C. M.; Li, X. S.; Linehan, J. C.; Smith, R. S.; Kay, B. D.; Schmid, B.; Shaw, W.; Gutowski, M.; Autrey, T. Angew. Chem., Int. Ed 2005, 44, 3578–3582.
- (13) Bluhm, M. E.; Bradley, M. G.; Butterick, R.; Kusari, U.; Sneddon, L. G. J. Am. Chem. Soc. 2006, 128, 7748–7749.
- (14) Feaver, A.; Sepehri, S.; Shamberger, P.; Stowe, A.; Autrey, T.; Cao, G. J. Phys. Chem. B 2007, 111, 7469–7472.
- (15) Xiong, Z.; Yong, C. K.; Wu, G.; Chen, P.; Shaw, W.; Karkamkar, A.; Autrey, T.; Jones, M. O.; Johnson, S. R.; Edwards, P. P.; David, W. I. F. *Nat. Mater.* **2008**, *7*, 138–141.
- (16) Diyabalanage, H. V. K.; Shrestha, R. P.; Semelsberger, T. A.; Scott,
 B. L.; Bowden, M. E.; Davis, B. L.; Burrell, A. K. Angew. Chem.,
 Int. Ed. 2007, 46, 8995–8997.
- (17) Schlesinger, H. I.; Burg, A. B. J. Am. Chem. Soc. 1938, 60, 290-299.
- (18) Myers, A. G.; Yang, B. H.; Kopecky, D. J. Tetrahedron Lett. 1996, 37, 3623–3626.

[†] National Institute of Standards and Technology.

[‡] University of Maryland.

[§] University of Pennsylvania.

structure information, i.e., atomic positions, has yet been published. The difficulty lies in several factors: the insensitivity of X-ray to light elements (e.g., H and Li), possible orientational disorder of -NH₃ and -BH₃ groups at room temperature, and various intermediate phases present in the samples. The reported structure of Ca(NH₂BH₃)₂•2THF includes organic solvent molecules, so that the Ca²⁺ cation in the structure bonds not only with NH₂BH₃⁻ but also with oxygen ions.¹⁶ This differs from the coordination environment of Ca^{2+} in the structure of solvent-free Ca(NH₂BH₃)₂ and thus results in the abnormal Ca-B and Ca-N bond distances, even shorter than those in Ca(NH₂)₂¹⁹ and Ca(BH₄)₂.^{20,21} In addition, the organic solvent contained releases accompanying the hydrogen, which not only complicates understanding of the dehydrogenation mechanism but degrades the purity of hydrogen desorbed. Removal of the solvent was reported to form amorphous Ca(NH₂BH₃)₂.¹⁶ Therefore, the mechanisms of the improved dehydrogenation properties of LiNH₂BH₃ and NaNH₂BH₃ and solvent-free Ca(NH₂BH₃)₂ are not fully understood in part due to the lack of the crystal structure information.

In this study, we determined the crystal structures of representative alkali- and alkaline-earth amidoboranes, LiNH₂BH₃ (note that NaNH₂BH₃ is isostructural to LiNH₂BH₃¹⁵) and Ca-(NH₂BH₃)₂, using combined X-ray diffraction and first-principles molecular dynamics simulations. The electronic structure and bonding characteristics of LiNH₂BH₃ and Ca(NH₂BH₃)₂ were investigated by first-principles calculations based on density function theory (DFT). With combined crystal and electronic structure information we further understood their improved dehydrogenation performance. Our study holds the key to understand the formation and stability of this new class of compounds and is critical for a rational improvement of hydrogen-storage properties of metal—amidoboranes and other possible amidoboranes with different substituents.

Experimental Section

Lithium amidoborane LiNH₂BH₃ and calcium amidoborane Ca(NH₂BH₃)₂ were prepared by ball milling stoichiometric ratios of LiH (95%, Aldrich)²² and NH₃BH₃ (90%, Aldrich) (1:1), and CaH₂ (99%, Aldrich) and BH₃NH₃ (1:2) powders under 1 bar He. The LiH–NH₃BH₃ and CaH₂–2NH₃BH₃ mixtures were milled using a Fritsch Pulverisette 7 planetary mill at 200 rpm for 1 h and 350 rpm for various time (see Supporting Information), respectively. After milling, the mixtures were stored in a He-filled glovebox for further structural and property characterization. Graphite powders as a ball milling additive, as suggested in the previous study,¹⁵ were also tested. The resulting structures and dehydrogenation properties of the products were found to be the same with or without the graphite additive. All sample handling was performed in the He-filled glovebox due to the extreme air sensitivity of these hydrides.

Phase identification and equilibrium were monitored on samples sealed in glass capillaries using a Rigaku X-ray diffractometer with a Cu K_{α} source. For the LiH–NH₃BH₃ mixture, a milling rate of more than 200 rpm or milling time longer than 60 min will cause partial decomposition of the LiNH₂BH₃ formed and formation of other phases. For CaH₂–2NH₃BH₃ mixture, extended and intense

Table 1. Experimental and calculated Bond Lengths^a

		length (Å)	
	bond	exp	calcd
NH ₃ BH ₃	N-B	1.58 ²⁷	1.592
	N-H	1.07^{27}	1.028/1.033
	B-H	1.18 ²⁷	1.228/1.221
LiNH ₂ BH ₃	Li-N	2.032	2.063
	N-B	1.561(7)	1.547
	N-H	1.025	1.025/1.026
	B-H	1.249	1.236/1.244/1.248
Ca(NH ₂ BH ₃) ₂	Ca-N	2.383	2.466
	N-B	1.575(4)	1.546
	N-H	1.027 /1.033	1.025/1.025
	B-H	1.263 /1.248/1.226	1.250/1.243/1.230

 a Note that the B–H and N–H distances were restrained with standard deviation < 0.005 Å during refinement.

milling is needed to increase the yield of Ca(NH₂BH₃)₂. Data for structural study were collected over 24 h at room temperature in the 2θ range of $5-70^{\circ}$ with a step size of 0.02° . The structures of these alkali or alkaline-earth amidoboranes were first partially solved using direct methods, which generated several candidate models with various [NH2BH3]⁻ orientations due to the uncertain H positions from XRD data. First-principles molecular dynamics simulated annealing was then performed to help in determining the [NH₂BH₃]⁻ configuration with the lowest energy among these models. Finally, Rietveld structural refinements on the optimal structural candidates were done using the GSAS package. The NH₂BH₃ complex was kept as a rigid body with common refined bond angles, and thermal parameters were fixed as reasonable values due to the inadequate number of observations. After refinement of the positions and orientations of the rigid body, the translation vectors of the rigid body, i.e., the bond lengths of B-N, B-H, and N-H, were also refined with certain restraints (see Tables S1 and S2, Supporting Information). One lithium atom and one NH₂BH₃ group for LiNH₂BH₃ and one calcium atom and one NH₂BH₃ group were refined for Ca(NH₂BH₃)₂ together with their corresponding lattice parameters in the final cycle, yielding the agreement factors of $R_{wp} = 0.0965$ and $R_p = 0.060$ for XRD data on LiNH₂BH₃ and $R_{wp} = 0.049$ and $R_p = 0.037$ for data on $Ca(NH_2BH_3)_2$, respectively. The slightly large R factors of the refined XRD pattern for LiNH₂BH₃ are due to the extra peaks from Li(NH₂BH₃)(NH₃BH₃) phase and the impurity phases from unreacted LiH and NH₃BH₃ precursor (see Figures S1, S3, and S6, Supporting Information). The refined XRD patterns of LiNH₂BH₃ and Ca(NH₂BH₃)₂ are shown in Figures S1 and S2 in the Supporting Information. The atomic positions and bond lengths from refinements and calculations are listed in Tables S1 and S2 in the Supporting Information and Table 1.

Dehydrogenation of LiNH₂BH₃ and Ca(NH₂BH₃)₂ was characterized by temperature-programmed desorption (TPD) performed on a Sieverts-type apparatus.²³

The hydrogen-to-metal ratios in the hydride samples were checked using the neutron prompt- γ activation analysis (PGAA) facility, which is able to detect hydrogen as low as 2 μ g.²⁴ Pure LiH and CaH₂ samples were used as standards to normalize γ -ray intensities. Disk sample configuration was used for all samples to decrease the amount of the neutrons absorbed by boron, and a long collecting time (~24 h) for each sample was adopted to obtain good statistics. The hydrogen-to-metal ratio in the ball-milled 1:1 ratio LiH/NH₃BH₃ is H:Li \approx 5.32:1 ("LiBNH_{5.32}"), 1:2 ratio LiH/2NH₃BH₃ is H:Li \approx 10.86:1 ("CaB₂N₂H_{11.08}"). The stoichiometry of H was found to be approximately H:Li \approx 1:1.32 ("LiBNH_{1.32}") and

⁽¹⁹⁾ Senker, J.; Muller, M.; Press, W.; Muller, P.; Mayer, H. M.; Ibberson, R. M. J. Phys. Chem. B 1998, 102, 931–940.

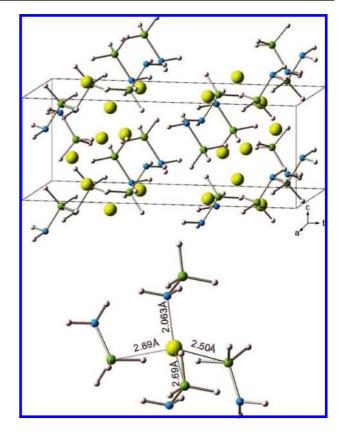
⁽²⁰⁾ Buchter, F. J. Phys. Chem. B 2008, 112 (27), 8042-8048.

⁽²¹⁾ Miwa, K.; Aoki, M.; Noritake, T.; Ohba, N.; Nakamori, Y.; Towata, S.; Zuttel, A.; Orimo, S. *Phys. Rev. B* **2006**, *74*, 155122.

⁽²²⁾ Certain commercial suppliers are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the NIST nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

⁽²³⁾ Zhou, W.; Wu, H.; Hartman, M. R.; Yildirim, T. J. Phys. Chem. C 2007, 111, 16131.

⁽²⁴⁾ Lindstrom, R. M. J. Res. Natl. Inst. Stand. Technol. 1993, 98, 127– 133.


ARTICLES

 $H{:}Ca\approx 1{:}2{.}233$ ("CaB_2N_2H_2._33") in the dehydrogenated lithium amidoborane and calcium amidoborane.

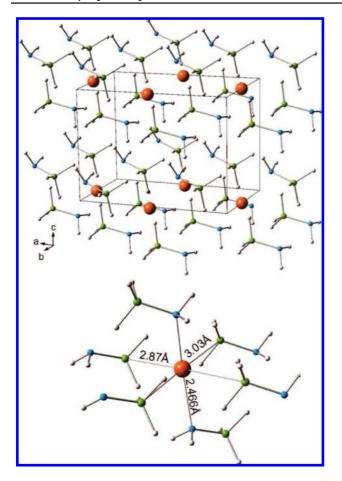
Theoretical Calculations. First-principles calculations were performed within the plane-wave implementation of density functional theory (DFT) in the PWscf package.²⁵ We used a Vanderbilt-type ultrasoft potential with Perdew-Burke-Ernzerhof exchange correlation. A cutoff energy of 408 eV was found to be enough for the total energy and force to converge within 0.5 meV/ atom and 0.005 eV/Å. Car-Parrinello molecular dynamics simulation²⁶ was used to help searching for the most likely crystal structures. The conventional unit cell was used with cell dimensions fixed at the experimental values. The initial system temperature was set to 600 K. The system was first allowed to evolve and equilibrate for 20 ps, and then the system temperature was slowly brought to 0 K in a period of 20 ps. Structure optimizations on the resulting candidate structures at 0 K were further performed with respect to atomic positions with the lattice parameters fixed at the experimental values. Lattice dynamics calculations were then performed on the relaxed structures to rule out unstable candidates. The total energies of the stable candidate structures at 0 K, including corrections for the zero-point motion, were also evaluated. This information was used in combination with XRD pattern matching to derive the best crystal structure solutions of the metal amidoboranes.

Results and Discussions

Crystal Structure and Electronic Structure of LiNH₂BH₃ and Ca(NH₂BH₃)₂. Most of the reflections in the XRD pattern collected on the ball-milled 1:1 ratio of LiH and NH3BH3 mixture can be indexed using a *Pbca* (No. 61, Z = 8) cell with a = 7.1051(8) Å, b = 13.930(1) Å, and c = 5.1477(7) Å, consistent with the previous report.¹⁵ Besides these peaks, we observed extra peaks which were also present in the previously reported patterns but not indexed,¹⁵ e.g., peaks at $d \approx 8.54$, 3.93 Å, etc. (Figure S1, Supporting Information). These peaks are not from the unreacted LiH and NH3BH3 precursors. When the LiH to NH₃BH₃ ratio decreases, these peaks became more prominent and the peak intensities from the Pbca cell weaken (see Figure S3, Supporting Information). At a 1:2 ratio of LiH and NH₃BH₃, reflections from the *Pbca* cell disappear and only these extra peaks remain. These remaining peaks can be indexed using a $Cmc2_1$ orthorhombic cell (Figure S4, Supporting Information). For the ball-milled mixture of CaH₂/2NH₃BH₃, all peaks other than the unreacted precursors can be indexed using a monoclinic C2 (No. 5, Z = 2) cell with a = 9.100(2)Å, b = 4.371(1) Å, c = 6.441(2) Å, and $\beta = 93.19^{\circ}$, which is different from the reported Ca(NH₂BH₃)(THF)₂ solvent-containing compound.¹⁶ With the indexed lattice parameters, the crystal structures of 1:1 lithium amidoborane and 1:2 calcium amidoborane were then solved using combined direct methods and first-principles molecular dynamics simulated annealing, which revealed a stoichiometry of LiNH₂BH₃ and Ca(NH₂BH₃)₂, respectively, consistent with elemental analysis from PGAA measurements. It can be seen from inspection of the XRD data that all the reflections of LiNH₂BH₃ and Ca(NH₂BH₃)₂ can be fitted very well using the determined structure models (Figures

Figure 1. (Top) Crystal structure of LiNH₂BH₃ as determined in this study. Li, B, N, and H atoms are represented by yellow, green, blue, and white spheres, respectively. (Bottom) Coordination environment of Li⁺. Each Li⁺ is coordinated with four NH₂BH₃⁻ ions with one Li–N bond length of 2.06 Å and three Li–B distances of 2.50–2.69 Å.

S1 and S2, Supporting Information), which strongly supports the validity of our structure solutions. More accurate structural details, such as individual B-H and N-H bond lengths and bond angles, can be easily obtained by refining neutron diffraction data on the isotope-enriched samples in the future. For the 1:2 LiH: NH₃BH₃ phase, the structure at room temperature was solved using the $Cmc2_1$ cell, which reveals a stoichiometry of Li(NH₂BH₃)(NH₃BH₃), also in agreement with the PGAA results. In this structure the NH₂BH₃⁻ ions have definite orientation to bond with Li⁺ ions while NH₃BH₃ units tend to orientational disorder at room temperature, similar to the known disordered structure of NH3BH3 at room temperature.²⁷ The calculated XRD pattern based on the structure determined by direct methods shows good agreement overall with the observed patterns (see Figure S4, Supporting Information). Due to its intermediate nature, DFT electronic structure calculations were not performed on this phase. We focus on the determined structures of LiNH₂BH₃ and Ca(NH₂BH₃)₂, which allows us to do further theoretical calculations on their electronic structures and energetics to better understand the formation and nature of this new class of alkali and alkalineearth amidoborane compounds.


Figures 1 and 2 show the derived crystal structures for $LiNH_2BH_3$ and $Ca(NH_2BH_3)_2$. In $LiNH_2BH_3$, the distance between Li^+ and N in the nearest $[NH_2BH_3]^-$ ion is 2.063 Å, similar to the Li-N distances (2.06-2.21Å) in the ionic compound $LiNH_2$.²⁸ In addition, each Li^+ is also surrounded by three other $[NH_2BH_3]^-$ ions with Li-B distances in the range

⁽²⁵⁾ Baroni, S.; Dal Corso, A.; de Gironcoli, S.; Giannozzi, P.; Cavazzoni, C.; Ballabio, G.; Scandolo, S.; Chiarotti, G.; Focher, P.; Pasquarello, A.; Laasonen, K.; Trave, A.; Car, R.; Marzari, N.; Kokalj, A. Quantum-ESPRESSO; http://www.pwscf.org/.

⁽²⁶⁾ Car, R.; Parrinello, M. Phys. Rev. Lett. 1985, 55, 2471.

^{(27) (}a) Hughes, E. W. J. Am. Chem. Soc. 1956, 78, 502. (b) Hoon, C. F.; Reynhardt, E. C. J. Phys. C. 1983, 16, 6129. (c) Buehl, M.; Steinke, T.; von Rague Schleyer, P.; Boese, R. Angew. Chem., Int. Ed. 1991, 30, 1160. (d) Klooster, W. T.; Koetzle, T. F.; Siegbahn, P. E. M.; Richardson, T. B.; Crabtree, R. H. J. Am. Chem. Soc. 1999, 121, 6337.

⁽²⁸⁾ Nagib, M.; Jacob, H. Z. Anorg. Allg. Chem. 1972, 391, 271.

Figure 2. (Top) Crystal structure of Ca(NH₂BH₃)₂ as determined in this study. Ca, B, N, and H atoms are represented by orange, green, blue, and white spheres, respectively. (Bottom) Coordination environment of Ca²⁺. Each Ca²⁺ is coordinated with six NH₂BH₃⁻ ions with two Li–N bond lengths of 2.46 Å and four Li–B distances of 2.87 and 3.03 Å.

of 2.50–2.69 Å, close to the Li–B distances (2.37–2.62 Å) in LiBH₄.²⁹ Therefore, each Li⁺ is actually coordinated with four $[NH_2BH_3]^-$ groups, consistent with the Li (IV) tetrahedral coordination preferred in the commonly observed complex hydrides, e.g., LiNH₂,²⁸ LiBH₄,²⁹ Li₂BNH₆, and Li₄BN₃H₁₀.³⁰ In Ca(NH₂BH₄)₂, each Ca²⁺ directly bonds with two $[NH_2BH_3]^-$ ions with the closest Ca–N distance of ~2.466 Å, similar to those in Ca(NH₂)₂ (Ca–N = 2.441–2.573Å).¹⁹ Each Ca²⁺ is also coordinated with the other four $[NH_2BH_3]^-$ groups with a Ca–B distance in the range of 2.87–3.03 Å, aligning with those distances (2.89–2.96 Å) in Ca(BH₄)₂.^{20,21} Therefore, Ca²⁺ in Ca(NH₂BH₃)₂ also satisfies its octahedral coordination preference (VI) in the Ca-related complex hydrides, e.g., Ca(NH₂)₂,¹⁹ CaNH,³¹ and Ca(BH₄)₂.^{20,21}

The B–N bond lengths in LiNH₂BH₃ and Ca(NH₂BH₃)₂ are 1.547 and 1.546 Å, respectively, both shorter than that (~1.58 Å) in solid NH₃BH₃,^{27,32} which indicates a stronger bonding between B and N in the alkali and alkaline-earth metal– amidoborane compounds. In addition, in these structures the B–N–Li and B–N–Ca bond angles are 113° and 116°, respectively, similar to the H–N–B bond angles (109–114°).

Table 2. Mulliken Population Analysis of Charge Densities

	NH_3BH_3	LiNH ₂ BH ₃	Ca(NH ₂ BH ₃) ₂
Li/Ca		+0.98	+1.67
Ν	-0.89	-0.94	-1.00
H(on N)	+0.45/+0.44	+0.34	+0.38/+0.38
В	-0.30	-0.33	-0.28
H(on B)	-0.06/-0.04	-0.17/-0.12/-0.10	-0.13/-0.10/-0.09

Note that the Li–N and Ca–N bonds are not bent toward the B–N bond, as suggested by previous theoretical calculations on the isolated molecular LiNH₂BH₃ and Ca(NH₂BH₃)₂ complexes.³³

The DFT-calculated B-H and N-H bond lengths after structural optimization are ~ 1.244 and 1.025 Å in LiNH₂BH₃ and ~ 1.241 and 1.025 Å in Ca(NH₂BH₃)₂, respectively. Refined B-H and N-H bond lengths from the rigid body are 1.249 and 1.025 Å for LiNH₂BH₃ and \sim 1.245 and \sim 1.03 Å in Ca(NH₂BH₃)₂. Although the refined bond lengths from the XRD data are not accurate, they are consistent with the calculations. The N-H bonds in LiNH₂BH₃ and Ca(NH₂BH₃)₂ are similar to the N-H bonds in solid NH₃BH₃ crystal structure, while the B-H bond lengths are longer than those in solid NH₃BH₃, indicating the similar N-H covalent bonds but the weakened covalent characteristics of B-H bonds. The calculated shortest BH····HN intermolecular distance (H–H distance) is 2.249 Å in LiNH₂BH₃ and 2.328Å in Ca(NH₂BH₃)₂, which is longer than those in solid NH_3BH_3 (2.02 Å)^{27d} but still slightly less than 2.4 Å, the van der Waals distance for the interaction constituting a dihydrogen bond.¹

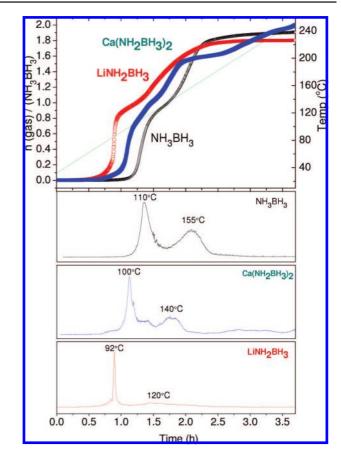
To further understand the bonding nature in this new class of compounds, we analyzed their electronic structures. The calculated Mulliken charges³⁴ are listed in Table 2. Consistent with the above structural determination on the bond lengths, our calculations show a significant ionic character between and $NH_2BH_3^-$ and Li/Ca cations with a Mulliken charge of +0.98on Li and +1.67 on Ca, close to their formula valences. The hydrogen on nitrogen becomes less charged in LiNH₂BH₃ and Ca(NH₂BH₃)₂ than in NH₃BH₃ because N attracts more electrons directly from the metal. In contrast, the hydrogen on boron in LiNH₂BH₃ and Ca(NH₂BH₃)₂ shows increased ionic character, i.e., more negative charged H on B, than that in NH₃BH₃. This suggests that H on B in LiNH₂BH₃ and Ca(NH₂BH₃)₂ will be a stronger Lewis base and more reactive than the H-B bond in NH₃BH₃. In Figure S8 (Supporting Information) we show the total electron densities of states (DOS) and their projections around the different atomic sites for the three compounds. Some common features are obvious. Particularly, the states of H bonded to N are in regions of lower energy while hydrogen bonded with boron accounts for most of the states in the region close to the Fermi level, indicating the H-B bond is more reactive than the H-N bond in general. Previous calculations in polyiminoborane and polyborazylene also suggested that H-B is a more ionic bond than H-N.³² The DOS of LiNH₂BH₃ and Ca(NH₂BH₃)₂ also exhibits some distinctive features compared to that of solid NH₃BH₃. For example, a large number of the states of N in LiNH₂BH₃ and Ca(NH₂BH₃)₂ are promoted to the region closer to the Fermi level, in agreement with the more charged N and stronger N-B hybridization in LiNH₂BH₃

⁽²⁹⁾ Hartman, M. R.; Rush, J. J.; Udovic, T. J.; Bowman, R. C., Jr.; Hwang, S. J. J. Solid State Chem. 2007, 180, 1298.

⁽³⁰⁾ Wu, H.; Zhou, W.; Udovic, T. J.; Rush, J. J.; Yildirim, T. Chem. Mater. 2008, 20, 1245.

⁽³¹⁾ Sichla, T.; Jacobs, H. Z. Anorg. Allg. Chem. 1996, 622, 2079–2082.

⁽³²⁾ Miranda, C. R.; Ceder, G. J. Chem. Phys. 2007, 126, 184703.


⁽³³⁾ Armstrong, D. R.; Perkins, P. G.; Walker, G. T. J. Mol. Struct. (THEOCHEM) 1985, 23, 189–203.

⁽³⁴⁾ Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry; McGraw-Hill: New York, 1989.

and Ca(NH₂BH₃)₂ than in NH₃BH₃ (Table 2). Overall, with accepting electrons from strong alkali or alkaline-earth metals, the charge density distribution and bonding natures of solid NH₃BH₃ are dramatically altered in these new compounds.

Formation and Dehydrogenation of LiNH₂BH₃ and Ca-(NH₂BH₃)₂. As in the previous work,¹⁵ the LiNH₂BH₃ and Ca(NH₂BH₃)₂ compounds in the present study were formed by ball milling NH₃BH₃ and the corresponding metal hydrides instead of using pure Li or Ca metal. Therefore, formation of these compounds cannot be simply rationalized by substitution of H with the more electron-donating elements as proposed previously.15 To understand formation of these metal amidoborane compounds, it is useful to make reference to the general Lewis base and acid reactions. The hydride anion H⁻ is known as a strong Lewis base, i.e., an active electron-donating species. When hydride is mixed with NH₃BH₃, H⁻ in the hydride attacks the protic hydrogen atom on nitrogen of NH3BH3, in other words, Lewis base H⁻ and NH₂BH₃⁻ compete with each other to combine with the proton Lewis acid, H^+ . H^- in LiH and CaH₂ is a stronger base than NH₂BH₃⁻. Therefore, the protic hvdrogen atom transfers from NH₃BH₃ to H⁻, generating H₂ molecules. Li⁺ or Ca²⁺ cations then subsequently combine with NH2BH3⁻ ions and form ionic compounds LiNH2BH3 or Ca(NH₂BH₃)₂. For a stronger Lewis base with a cation of stronger ionicity, e.g., NaH, it will be more facile for deprotonation to occur and generate the metal amidoborane compound, as observed in NaNH2BH3.15 If hydrogen in these hydrides cannot obtain enough electrons from its metal cation donor, the hydride will be a relatively weaker Lewis base and not be capable of acquiring the protic hydrogen atom from NH₃BH₃ to form amidoborane. This is confirmed by the observation that no metal amidoborane compounds can be formed by milling MgH₂/2NH₃BH₃ and TiH₂/2NH₃BH₃ mixtures. MgH₂ (or TiH₂) and NH₃BH₃ remain after ball milling under various conditions (see Figures S9 and S10, Supporting Information). The milled MgH₂ or TiH₂ also do not participate in the dehydrogenation process of NH₃BH₃, as observed by Mg metal forming and TiH₂ remaining in the XRD patterns after dehydrogenation (Figures S9, S10, and S11, Supporting Information).

The TPD measurement was performed on LiNH₂BH₃ and Ca(NH₂BH₃)₂ to study their dehydrogenation properties. Dehydrogenation of milled pure NH3BH3 was also measured for comparison. Figure 3 shows the TPD results. Pure NH₃BH₃ releases \sim 1.8 equiv of H₂/mol of BH₃NH₃ at \sim 110 and \sim 155 °C. LiNH₃BH₃ releases most of the hydrogen at ~92 and 120 °C within 3 h. PGAA element analysis of the samples after TPD study up to 200 °C indicates a composition of ~LiBNH_{1.32}. Unlike the solvent-containing Ca(NH₂BH₃)₂•2THF, which releases organic molecules in addition to hydrogen, our solventfree Ca(NH₂BH₃)₂ shows a cleaner desorption profile with explicit hydrogen desorption temperatures. Ca(NH2BH3)2 starts to desorb hydrogen at \sim 80 °C with vigorous hydrogen release at ~ 100 and 140 °C. There is a small hydrogen desorption peak at 110 °C, which could be due to the unreacted NH₃BH₃ precursor. After the reaction finished at 250 °C, ~2 equiv of H_2 (per 1/2Ca(NH₂BH₃)₂) were desorbed with a composition of ~CaB₂N₂H_{2.33} from the TPD samples. XRD on the products of these alkali and alkaline-earth metal amidoboranes after desorption indicated formation of amorphous phases, which prevents direct determination of their structures. After dehydrogenation, both LiNH₂BH₃ and Ca(NH₂BH₃)₂ could not be rehydrogenated within the currently studied temperature range under 50 bar H₂ pressure. Comparing the reported NMR data

Figure 3. TPD results of hydrogen release for LiNH₂BH₃, Ca(NH₂BH₃)₂, and NH₃BH₃ with a 1 °C/min heating ramp. Dehydrogenation of LiNH₂BH₃ and Ca(NH₂BH₃)₂ begins at lower temperatures than NH₃BH₃. The amount of hydrogen gas released has been normalized as n (H₂ gas)/mol of NH₃BH₃.

on the dehydrogenated LiNH₂BH₃¹⁵ with previous studies in the dehydrogenated NH₃BH₃,¹³ the chemical shift of +29.8 ppm is consistent with the observed formation of internal B=N or terminal B=NH₂ units. Moreover, in agreement with the reported dehydrogenation studies,^{15,16} we found that the notable features of dehydrogenation of these metal amidoboranes are the suppressed release of borazine during dehydrogenation and enhanced desorption kinetics at low temperatures.

The improved dehydrogenation properties of alkali metal amidoboranes have been ascribed to the presence of both positive and negative hydrogen and avoidance of mass transport through different phases as for the amide-hydride combination.¹⁵ However, the protic and hydridic hydrogens are actually present in the pure NH₃BH₃ as well. The recently reported enhanced dehydrogenation of NH₃BH₃, with the aid of ionic liquids,¹³ acids,¹¹ and catalysts,⁸⁻¹⁰ also does not involve an interface reaction and mass transport through different phases. Instead, we propose that the changes in the reaction kinetics reflect the different reactivity of hydrogen in the alkali or alkaline-earth metal amidoboranes and pure solid NH₃BH₃. As noted previously, more reactive intermediates or transition states, such as the diammoniate of diborane [(NH₃)₂BH₂]⁺[BH₄]⁻⁶ and/ or BH_4^- formed by dehydrogenation of NH_3BH_3 in ionic liquids¹³ and the borenium cation $[H_2B-NH_3]^+$ produced in acid initiation of NH₃BH₃ dehydrogenation,¹¹ have been shown to effectively enhance dehydrogenation and reduce the borazine release. Therefore, the decreased dehydrogenation temperatures of LiNH₂BH₃ and Ca(NH₂BH₃)₂ compared to solid AB are more

likely related to their crystal structures and the resulting changes in the nature and reactivity of hydrogens.

As described in the previous section, with more electrons being donated from metal to [NH₂BH₃]⁻ ions, the hydridic B-H bond of [NH₂BH₃]⁻ ions is increased, which enhances its activity compared to those in NH₃BH₃. This effect is similar to the active intermediate BH_4^- induced by the ionic liquid. Therefore, the barrier of the reaction between [NH₂BH₃]⁻ ions would be lower than that between two neutral NH₃BH₃ molecules. In addition, the charged [NH₂BH₃]⁻ ion creates more polar surroundings compared to the symmetric NH3BH3 complex. As proposed for the enhanced dehydrogenation of NH₃BH₃ in ionic liquids, the reaction environment controls the course of hydrogen release.¹³ Compared to reactions between NH₃BH₃ in solid AB, the polar environments of the [NH₂BH₃]⁻ ions coupled with a change in the reactivity among these ions in the metal amidoborane compounds will facilitate B-H····H-N interactions between the adjacent [NH₂BH₃]⁻ ions. Even though we do not have enough information to determine the reaction pathway and the dehydrogenation products, it is tempting to conclude that the electronic and structural changes from NH₃BH₃ to [NH₂BH₃]⁻ are the main reasons for the observed improved hydrogen release process/kinetics.

Identification of the dehydrogenation products is still necessary in the future, which will enable direct comparison of the reaction enthalpies and barriers between metal amidoboranes and NH₃BH₃ through first-principles reaction path calculations and thus promote further studies to achieve the possible reversibility of these materials.

Conclusions

We successfully prepared solvent-free alkali and alkalineearth metal amidoboranes, i.e., lithium amidoborane LiNH₂BH₃ and calcium amidoborane Ca(NH₂BH₃)₂. Their crystal structures have been determined using combined X-ray diffraction and molecular dynamics simulated annealing methods. The desorption results showed that the alkali and alkaline-earth metal amidoboranes not only provide high hydrogen storage capacity but also exhibit dramatically improved dehydrogenation properties compared to pure solid ammonia borane (NH₃BH₃). From crystal structure analysis and a dehydrogenation study combined with the first-principles DFT calculations, the reduced dehydrogenation temperature is likely related to the different bonding nature and reactivity of the metal amidoboranes compared to NH₃BH₃. Similar to NH₃BH₃ in acid or ionic liquid, these results suggest that the dehydrogenation properties of NH₃BH₃ in the solid state may also be significantly improved by tuning the reactivity of B-H and/or N-H through inducing polar species such as strong electropositive cations or highly active anions (e.g., NH_2^- and BH_4^-).

Acknowledgment. This work was partially supported by the DOE through BES grant no. DE-FG02-08ER46522 (T.Y.).

Supporting Information Available: Crystal structure information of LiNH₂BH₃ and Ca(NH₂BH₃)₂, refined and calculated atomic positions and refined XRD patterns; calculated vibrational frequencies of LiNH₂BH₃ and Ca(NH₂BH₃)₂; structure variation of the LiH–NH₃BH₃ binary system with different LiH: NH₃BH₃ ratios; structure information of LiNH₂BH₃(NH₃BH₃) (1:2 phase); calculated density of states (DOS) of LiNH₂BH₃, Ca(NH₂BH₃)₂, and NH₃BH₃; structural and dehydrogenation studies of other mixed metal hydride (i.e., MgH₂ and TiH₂) and NH₃BH₃ systems; proposed possible reaction pathways and dehydrogenation products; complete ref 20. This material is available free of charge via the Internet at http://pubs.acs.org.

JA806243F